

## **Timber Frame Wall Tie**

## FT-50

## **Tested Values**

|                        | Compression (kN) | Y <sub>m</sub>                                        | Tension (kN)               | Y <sub>m</sub>   |
|------------------------|------------------|-------------------------------------------------------|----------------------------|------------------|
| Nail end (as received) | 1.057            |                                                       | 0.648 (nail withdrawal)    | 1.3(1)           |
| (24mm movement)        | 0.612            | 1.15 (3) (buckling of tie – steel failure)            | 0.690                      |                  |
| Masonry end            | 0.954            | 1.15 <sup>(3)</sup> (buckling of tie – steel failure) | 1.836 (masonry withdrawal) | 3 <sup>(2)</sup> |

- (1) from BS EN1995-1-1 table 2.3 connections (fixing withdrawal of tie)
- (2) from NA to BS EN1996-1-1 table NA.1 (mortar failure of tie)
- (3) from NA to BS EN1995-1-1 table NA.3 (steel buckling of tie)

Based on the following criteria the following calculations have been done:

In the following examples a factored windload of 1.65kN/m² is suggested

| Partial factor for variable action |                   | 1.5                      |
|------------------------------------|-------------------|--------------------------|
| Combined pressure coefficient      |                   | 1.1                      |
| Peak velocity pressure             |                   | = 1.0 kN/m <sup>2</sup>  |
| Applied wind load on gable panel   | = 1.5 x 1.1 x 1.0 | = 1.65 kN/m <sup>2</sup> |

| Failure     | Test Result (kN) | Y <sub>m</sub> | kmod* | Result x kmod / Y <sub>m</sub> (kN) |
|-------------|------------------|----------------|-------|-------------------------------------|
| Compression | 0.612            | 1.15           | 1.1   | 0.585                               |
| Tension     | 0.648            | 1.3            | 1.1   | 0.548                               |
| Tension     | 1.836            | 3              | 1.1   | 0.673                               |
| Compression | 0.954            | 1.15           | 1.1   | 0.912                               |
|             |                  |                |       | 0.548                               |

<sup>\*</sup>An instantaneous action (kmod value - 1.1) has be used.

## Maximum net surface wind pressure for the FT-50

| Product Code | Vertical Tie Spacing (mm)         |         |       |         |       |         |       |         |
|--------------|-----------------------------------|---------|-------|---------|-------|---------|-------|---------|
|              | 225                               |         | 300   |         | 375   |         | 450   |         |
|              | Stud Centres (mm)                 |         |       |         |       |         |       |         |
| Product Code | 600                               | )       | 60    | 0       | 600   |         | 600   | )       |
|              | Maximum Net Surface Wind Pressure |         |       |         |       |         |       |         |
|              | kN/m²                             | ties/m² | kN/m² | ties/m² | kN/m² | ties/m² | kN/m² | ties/m² |
| FT-50        | 4.05                              | 7.4     | 3.01  | 5.5     | 2.41  | 4.4     | 2.02  | 3.7     |

|                                            | 1000/225 = 4.4444<br>4.4444x(1000/600) = 7.4 ties/m <sup>2</sup> | 1000/300 = 3.3333<br>3.3333x(1000/600) = 5.5 ties/m <sup>2</sup> | 1000/375 = 2.6666<br>2.6666x(1000/600) = 4.4 ties/m <sup>2</sup> | 1000/450 = 2.2222<br>2.2222x(1000/600) = 3.7ties/m <sup>2</sup> |
|--------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|
| Lowest failure<br>(with Ym & kmod applied) | 0.548 x 7.4 = 4.05kN/m <sup>2</sup>                              | 0.548 x 5.5 = 3.01kN/m <sup>2</sup>                              | 0.548 x 4.4 = 2.41kN/m <sup>2</sup>                              | 0.548 x 3.7 = 2.02kN/m <sup>2</sup>                             |
| Peak velocity pressure (kN/m²)             | 2.45                                                             | 1.82                                                             | 1.46                                                             | 1.22                                                            |

Based on the above values this could be worked backwards
Provide a maximum wind load for 3.7 ties/m2 = (2.02/1.1/1.5) = 1.22kN/m2 peak velocity pressure